这是 Paschotta 博士的无源光纤教程的第 2 部分通常,在光纤中传播的光的强度分布在传播过程中会发生变化。它甚至经常以相当复杂的方式发展。例如,看看如果我们将高斯光束(相对于光束轴倾斜 20°)注入纤芯半径为 20 μm 且 NA 为 0.3 的光纤会发生什么情况:图 1: 使用 RP Fiber Power 软件 模拟的多模光纤中强度的演变。将与光束轴成 20° 角的高斯光束注入光纤。
(请注意,这里我们只显示强度分布,因为显示的空间区域较大,因此很难显示波前。)可以清楚地看到当光束到达纤芯/包层界面并在那里反射时发生的干涉效应。最后,横向光束轮廓如图 2 所示:图 2:传播超过 100 μm 后光纤中的光束轮廓。我们已经看到强度分布通常以复杂的方式演变。然而,存在某些幅度分布(即电场幅度的分布),其中强度分布在传播期间保持不变(假设是无损光纤)。这种场分布称为光纤的模式。其中最简单的基本模式,也称为 LP 01模式,对于当前示例中的光纤如下所示:
图 3:模光纤中基模的强度分布。灰色圆圈表示纤芯/包层边界。
至于基本模式,自然背离正好被不均匀的指数分布所抵消。请注意,特别是高阶模式可以具有显着延伸到包层中的轮廓。下图显示了光纤所有导模的振幅分布,按其模式指数排序:图 5:多模光纤的所有导模的幅度分布。RP Fiber Power 软件 已在远低于一秒的时间内计算出这些模式。在我们的示例中,纤芯半径为 20 μm,NA = 0.3,光纤在 1.5 μm 波长处有 84 个不同的导模(见图 5)——当计算模式的不同方向时,甚至有 160 个。(例如,LP 11模式也存在于旋转 90° 的版本中;这两个模式是相互正交的。)所有的导模基本上都限制在纤芯区域,即使它们可以在一定程度上延伸到包层中(但随着距离的增加强度会降低从核心)。图 6 显示了光纤模式的远场分布,因为它们可以在离光纤末端很远的地方观察到。它们看起来与近场
还有许多非引导模式,称为包层模式,可以延伸到整个包层(和核心)。由于包层通常比纤芯大得多,并且通常具有更高的数值孔径(由于与其周围的涂层具有较大的折射率对比),因此包层通常比纤芯具有更多的模式。